Organic Compounds Containing Halogens

Organic Compounds Containing Halogens can be divided into two groups:

Alkyl Halides: Aliphatic carbon chain with halogen atom(s) as substitution.. Example: Chlorobutane.

• **Aryl Halides:** Aromatic carbon ring with halogen atom(s) as substitution on ring. **Example:** Chlorobenzene.

Methods of Preparation of Alkyl Halides:

Grove's process: Replacement of "OH" group in primary and secondary alcohols with an "X' atom in presence of Zinc chloride.

$$\overrightarrow{ROH} + \overrightarrow{Z}nCl_2 \longrightarrow R \xrightarrow{f} \overrightarrow{O} - \overrightarrow{Z}nCl_2 \xrightarrow{S_N 1} \xrightarrow{R} + [HO - \overrightarrow{Z}nCl_2]$$

The reaction follows S₂ mechanism when the concentration of zinc chloride is low.

(b) Darzen Process: Reaction of thionyl chloride with straight-chain primary alcohols without presence or absence of pyridine.

In presence of pyridine: ROH + SOCl₂ \rightarrow HCl + ROSOCl HCl+C₂H₂N \rightarrow C5H5NH⁺+Cl⁻ ROSOCl + Cl⁻ \rightarrow RCl + SO₂ (S_N2)

- Action of a phosphorus halide on the alcohol: $ROH + PCl_s \rightarrow RCl + HCl + POCl_s$.
- **By addition of Halogen to an alefins:** R-CH=CH₂ +Br₂+CCl₄ →R-CH(Br)CH₂Br
- **Photohalogenation:** CH₂ + Cl₂ +hv → CH₂Cl + HCl
- Displacement of one halogen atom by another:RCl + NaI →RI + NaCl
- **Bonodine Hünsdiecker Reaction:** RCO₂Ag + Br₂→RBr + CO₂ + AgBr
- Hydrohalogenation of unsaturated hydrocarbons:
 - o In absence of peroxide: RCH=CH2 +HBr→RCH(Br)CH3
 - o In presence of peroxide: RCH=CH2 +HBr + Peroxide →RCH₂CH_{20p}

Methods of Preparation of aryl halides

- **Halogenation:** Ar-H + X2 +Lewis Base \rightarrow Ar-x + HX
- From diazonium salts:
- \circ $C_cH_cN_cCl + HBF_d \rightarrow C_cH_cF$ (Schiemann Reaction)
- $\circ \quad CHNCl + CuCl \rightarrow CHCCl$ (Sandmeyer Reaction)
- \circ C₂H₂N₂Cl + Cu powder → C₂H₂Cl (Gatterman Reaction)

CHEMGGURU.ORG YOUTUBE: CHEMGGURU

S_x1 and S_x2 mechanism:

Steps Two: $(1) R:XI \rightarrow R^* + X^*$ $(2) R^* + Nu 1 \rightarrow RNu$ Rate $= K [RX] (1st order)$ TS of slow step $R = K [RX] (1st order)$ Ts of slow step Reactivity $R = R = R = R = R = R = R = R = R = R =$	3 _M 1 and 3 _M 2 mech	S.1	S, 2
TS of slow step R Stereochemistry Inversion and racemization Molecularity Unimolecular Reactivity structure of R Determining Factor Nature of X Solvent effect on rate No effect as it does not appear in the rate expression. Catalysis Driversion and Inversion (backside attack) CH ₃ > 1° > 2° > 3° Steric hindrance in R group RI> RBr> RCl> RF with Nu there is a large rate increase in polar aprotic solvents. Rate depends on nucleophilicity I > Br > Cl; RS > RO None Competitive Elimination, Elimination	Steps	Two: (1) R:Xl \rightarrow R ⁺ + X ⁻	One :
Stereochemistry Inversion and racemization Molecularity Unimolecular Reactivity Structure of R Determining Factor Nature of X Solvent effect on rate Effect of nucleophile Catalysis Inversion (backside attack) Inversion (backside attack) CH ₃ > 1°> 2°> 3° Steric hindrance in R group RI> RBr> RCl> RF Rate increases in polar solvent No effect as it does not appear in the rate expression. Lewis acid, eg. Ag⁺, AlCl ₃ , ZnCl ₂ Competitive Elimination, Elimination	Rate		
racemization attack) Molecularity Unimolecular Bimolecular Reactivity structure of R Determining Factor Nature of X Solvent effect on rate Effect of nucleophile Catalysis racemization Bimolecular Bimolecular CH ₃ > 1° > 2° > 3° Steric hindrance in R group RI> RBr> RCl> RF Rate increases in polar solvent with Nu there is a large rate increase in polar aprotic solvents. Rate depends on nucleophilicity I' > Br' > Cl'; RS' > RO' Catalysis Lewis acid, eg. Ag ⁺ , AlCl ₃ , ZnCl ₂ Competitive Elimination, Elimination	TS of slow step	R CX ^{δ-} R	
Reactivity structure of R Determining Factor Nature of X Solvent effect on rate No effect as it does not appear in the rate expression. Catalysis Stability of R ⁺ RI> RBr> RCl> RF Rate increases in polar solvent Steric hindrance in R group RI> RBr> RCl> RF with Nu there is a large rate increase in polar aprotic solvents. Rate depends on nucleophilicity I > Br' > Cl'; RS' > RO' None Competitive Elimination, Elimination	Stereochemistry		
structure of R Determining Factor Nature of X Solvent effect on rate RI> RBr> RCl> RF Rate increases in polar solvent No effect as it does not appear in the rate expression. Catalysis Steric hindrance in R group RI> RBr> RCl> RF with Nu there is a large rate increase in polar aprotic solvents. Rate depends on nucleophilicity I > Br > Cl ; RS > RO Catalysis Lewis acid, eg. Ag ⁺ , AlCl ₃ , ZnCl ₂ Competitive Elimination, Elimination	Molecularity	Unimolecular	Bimolecular
nucleophile not appear in the rate expression. I' > Br' > Cl'; RS' > RO' Catalysis Lewis acid, eg. Ag^+ , $AlCl_3$, $ZnCl_2$ Competitive Elimination, Elimination	Determining Factor Nature of X	Stability of R ⁺ RI> RBr> RCl> RF Rate increases in	Steric hindrance in R group RI> RBr> RCl> RF with Nu there is a
$AlCl_3$, $ZnCl_2$ Competitive Elimination, Elimination	Effect of nucleophile	not appear in the	nucleophilicity
F	Catalysis		None
	Competitive reaction	-	Elimination

Reactions of Alkyl Halides:

- **Hydrolysis:** : $RX + OH^- \rightarrow ROH + X^-$
- Williamson Synthasis: R-ONa +R'X \rightarrow R-R' + NaX
- Reaction with dry silver oxide: $2R-X + Ag_*O \rightarrow R-O-R$
- Reaction with sodio-Alkynides: $R-C=C-Na+X-R \rightarrow R-C=C-R+NaX$
- Reaction with potassium-cyanide: KCN+X-R→ RCN +KX
- Reaction with silver-cyanide: AgCN+X-R→ RNC +AgX
- Reaction with silver-nitrite: $AgNO_0 + X-R \rightarrow RNO_0 + AgX$
- Reaction with potassium-nitrite: KNO +X-R \rightarrow R-O-N=O +KX
- Fridal Craft Reaction: $R-X + C_cH_c + AlCl_a \rightarrow C_cH_c-R$
- Malonic Ester Synthasis: $R-X + CH(CO_2C_2H_2)_2 \rightarrow R-CH(CO_2C_2H_2)_2 +HX$
- **Acetoacetic Ester Synthasis:** R-X + CH(CO₂CH₂)₂ →R-CH(CO₂CH₂)₂ +HX
- **Reaction with Ammonia:** R-X +NH_a → R-NH_a +HX
- Wurtz Reaction: $2R-I+2Na \rightarrow R-R+2NaI$
- **Dehydrohalogenation:** CH₂.CH₂.CH₃Br + alco.KOH → CH₂-CH = CH₂ + KBr + H₂O
- **Reaction with alcoholic AgNO**: R-X +AgNO $_{2} \rightarrow R^{+} + AgX\downarrow +HNO$

CHEMGGURU.ORG YOUTUBE: CHEMGGURU

Substitution Versus Elimination:

CH ₃ X	RCH ₂ X	R ₂ CHX	$R_{s}CX$
Methyl	1°	2°	3°
Bimolecular	$S_{N}1/E1$ or E_{2}		
Gives S _N 2	Gives mainly	Gives mainly	No S _N 2 reaction. In
reactions	S _x 2 except with	S_{x} 2 with	solvolysis gives
	a hindered	weak bases	$S_{N}1/E1$, and at
	strong base		lower temperature
	[e.g., (CH ₂) ₂ CO ⁻]	RCO ₂ -) and	S _x 1 is favoured.
	and then gives	mainly E2	When a strong
	mainly E2.	with strong	base (e.g., RO ⁻) is
		bases (e.g.,	used. E2
		RO-)	predominates.

Haloform(Tri halide):

- **Preparation:** It can be prepared from any alcohol having -CH(OH)CH₂ group or from the aldehydes and ketones formed from above type of alcohols i.e, from a carbonyl compound having three a hydrogen atoms by the action of X₂ and an alkali or Na₂CO₂.
- Laboratory Preparation of CHCl₃:

$$\begin{array}{c} \text{CH}_3\text{CH}_2\text{OH} \xrightarrow{\hspace{1cm}} \begin{array}{c} \text{oxidation by Cl}_2 \\ \end{array} \xrightarrow{\hspace{1cm}} \text{CH}_3\text{CHO} \xrightarrow{\hspace{1cm}} \begin{array}{c} \text{chlorination} \\ \end{array} \xrightarrow{\hspace{1cm}} \text{CCl}_3\text{CHO} \xrightarrow{\hspace{1cm}} \begin{array}{c} \text{Ca(OH)}_2 \\ \end{array} \xrightarrow{\hspace{1cm}} \text{hydrolysis} \end{array} \xrightarrow{\hspace{1cm}} \begin{array}{c} \text{CHCl}_3 \\ \end{array}$$

• **Physical properties of CHCl**₂ colourless liquid with sweet smell and test. It is heavier than water and insoluble in it but soluble in alcohol and ether.

Chemical Reactions of CHCl₃:

- Oxidation: CHCl₂ + 1/2 O₂ → HCl + COCl₂ (phosgene)
- **Hydrolysis:** CHCl₂ + 4NaOH → HCOONa + 3NaCl + 2H₂O
- Carbyl amine reactions: CHCl₂ + CH₂NH₂ + 3NaOH → CH₂N≡C +3NaCl +3H₂O