Organic Compounds Containing Halogens ### Organic Compounds Containing Halogens can be divided into two groups: Alkyl Halides: Aliphatic carbon chain with halogen atom(s) as substitution.. Example: Chlorobutane. • **Aryl Halides:** Aromatic carbon ring with halogen atom(s) as substitution on ring. **Example:** Chlorobenzene. # Methods of Preparation of Alkyl Halides: Grove's process: Replacement of "OH" group in primary and secondary alcohols with an "X' atom in presence of Zinc chloride. $$\overrightarrow{ROH} + \overrightarrow{Z}nCl_2 \longrightarrow R \xrightarrow{f} \overrightarrow{O} - \overrightarrow{Z}nCl_2 \xrightarrow{S_N 1} \xrightarrow{R} + [HO - \overrightarrow{Z}nCl_2]$$ The reaction follows S₂ mechanism when the concentration of zinc chloride is low. **(b) Darzen Process:** Reaction of thionyl chloride with straight-chain primary alcohols without presence or absence of pyridine. In presence of pyridine: ROH + SOCl₂ \rightarrow HCl + ROSOCl HCl+C₂H₂N \rightarrow C5H5NH⁺+Cl⁻ ROSOCl + Cl⁻ \rightarrow RCl + SO₂ (S_N2) - Action of a phosphorus halide on the alcohol: $ROH + PCl_s \rightarrow RCl + HCl + POCl_s$. - **By addition of Halogen to an alefins:** R-CH=CH₂ +Br₂+CCl₄ →R-CH(Br)CH₂Br - **Photohalogenation:** CH₂ + Cl₂ +hv → CH₂Cl + HCl - Displacement of one halogen atom by another:RCl + NaI →RI + NaCl - **Bonodine Hünsdiecker Reaction:** RCO₂Ag + Br₂→RBr + CO₂ + AgBr - Hydrohalogenation of unsaturated hydrocarbons: - o In absence of peroxide: RCH=CH2 +HBr→RCH(Br)CH3 - o In presence of peroxide: RCH=CH2 +HBr + Peroxide →RCH₂CH_{20p} # Methods of Preparation of aryl halides - **Halogenation:** Ar-H + X2 +Lewis Base \rightarrow Ar-x + HX - From diazonium salts: - \circ $C_cH_cN_cCl + HBF_d \rightarrow C_cH_cF$ (Schiemann Reaction) - $\circ \quad CHNCl + CuCl \rightarrow CHCCl$ (Sandmeyer Reaction) - \circ C₂H₂N₂Cl + Cu powder → C₂H₂Cl (Gatterman Reaction) #### CHEMGGURU.ORG YOUTUBE: CHEMGGURU ### S_x1 and S_x2 mechanism: | Steps Two: $(1) R:XI \rightarrow R^* + X^*$ $(2) R^* + Nu 1 \rightarrow RNu$ Rate $= K [RX] (1st order)$ TS of slow step $R = K [RX] (1st order)$ Ts of slow step Reactivity $R = R = R = R = R = R = R = R = R = R =$ | 3 _M 1 and 3 _M 2 mech | S.1 | S, 2 | |--|--|--|---| | TS of slow step R Stereochemistry Inversion and racemization Molecularity Unimolecular Reactivity structure of R Determining Factor Nature of X Solvent effect on rate No effect as it does not appear in the rate expression. Catalysis Driversion and Inversion (backside attack) CH ₃ > 1° > 2° > 3° Steric hindrance in R group RI> RBr> RCl> RF with Nu there is a large rate increase in polar aprotic solvents. Rate depends on nucleophilicity I > Br > Cl; RS > RO None Competitive Elimination, Elimination | Steps | Two:
(1) R:Xl \rightarrow R ⁺ + X ⁻ | One : | | Stereochemistry Inversion and racemization Molecularity Unimolecular Reactivity Structure of R Determining Factor Nature of X Solvent effect on rate Effect of nucleophile Catalysis Inversion (backside attack) Inversion (backside attack) CH ₃ > 1°> 2°> 3° Steric hindrance in R group RI> RBr> RCl> RF Rate increases in polar solvent No effect as it does not appear in the rate expression. Lewis acid, eg. Ag⁺, AlCl ₃ , ZnCl ₂ Competitive Elimination, Elimination | Rate | | | | racemization attack) Molecularity Unimolecular Bimolecular Reactivity structure of R Determining Factor Nature of X Solvent effect on rate Effect of nucleophile Catalysis racemization Bimolecular Bimolecular CH ₃ > 1° > 2° > 3° Steric hindrance in R group RI> RBr> RCl> RF Rate increases in polar solvent with Nu there is a large rate increase in polar aprotic solvents. Rate depends on nucleophilicity I' > Br' > Cl'; RS' > RO' Catalysis Lewis acid, eg. Ag ⁺ , AlCl ₃ , ZnCl ₂ Competitive Elimination, Elimination | TS of slow step | R
CX ^{δ-}
R | | | Reactivity structure of R Determining Factor Nature of X Solvent effect on rate No effect as it does not appear in the rate expression. Catalysis Stability of R ⁺ RI> RBr> RCl> RF Rate increases in polar solvent Steric hindrance in R group RI> RBr> RCl> RF with Nu there is a large rate increase in polar aprotic solvents. Rate depends on nucleophilicity I > Br' > Cl'; RS' > RO' None Competitive Elimination, Elimination | Stereochemistry | | | | structure of R Determining Factor Nature of X Solvent effect on rate RI> RBr> RCl> RF Rate increases in polar solvent No effect as it does not appear in the rate expression. Catalysis Steric hindrance in R group RI> RBr> RCl> RF with Nu there is a large rate increase in polar aprotic solvents. Rate depends on nucleophilicity I > Br > Cl ; RS > RO Catalysis Lewis acid, eg. Ag ⁺ , AlCl ₃ , ZnCl ₂ Competitive Elimination, Elimination | Molecularity | Unimolecular | Bimolecular | | nucleophile not appear in the rate expression. I' > Br' > Cl'; RS' > RO' Catalysis Lewis acid, eg. Ag^+ , $AlCl_3$, $ZnCl_2$ Competitive Elimination, Elimination | Determining
Factor
Nature of X | Stability of R ⁺ RI> RBr> RCl> RF Rate increases in | Steric hindrance in R group RI> RBr> RCl> RF with Nu there is a | | $AlCl_3$, $ZnCl_2$ Competitive Elimination, Elimination | Effect of
nucleophile | not appear in the | nucleophilicity | | F | Catalysis | | None | | | Competitive reaction | - | Elimination | #### **Reactions of Alkyl Halides:** - **Hydrolysis:** : $RX + OH^- \rightarrow ROH + X^-$ - Williamson Synthasis: R-ONa +R'X \rightarrow R-R' + NaX - Reaction with dry silver oxide: $2R-X + Ag_*O \rightarrow R-O-R$ - Reaction with sodio-Alkynides: $R-C=C-Na+X-R \rightarrow R-C=C-R+NaX$ - Reaction with potassium-cyanide: KCN+X-R→ RCN +KX - Reaction with silver-cyanide: AgCN+X-R→ RNC +AgX - Reaction with silver-nitrite: $AgNO_0 + X-R \rightarrow RNO_0 + AgX$ - Reaction with potassium-nitrite: KNO +X-R \rightarrow R-O-N=O +KX - Fridal Craft Reaction: $R-X + C_cH_c + AlCl_a \rightarrow C_cH_c-R$ - Malonic Ester Synthasis: $R-X + CH(CO_2C_2H_2)_2 \rightarrow R-CH(CO_2C_2H_2)_2 +HX$ - **Acetoacetic Ester Synthasis:** R-X + CH(CO₂CH₂)₂ →R-CH(CO₂CH₂)₂ +HX - **Reaction with Ammonia:** R-X +NH_a → R-NH_a +HX - Wurtz Reaction: $2R-I+2Na \rightarrow R-R+2NaI$ - **Dehydrohalogenation:** CH₂.CH₂.CH₃Br + alco.KOH → CH₂-CH = CH₂ + KBr + H₂O - **Reaction with alcoholic AgNO**: R-X +AgNO $_{2} \rightarrow R^{+} + AgX\downarrow +HNO$ #### CHEMGGURU.ORG YOUTUBE: CHEMGGURU ### **Substitution Versus Elimination:** | CH ₃ X | RCH ₂ X | R ₂ CHX | $R_{s}CX$ | |------------------------|--|-------------------------|----------------------------------| | Methyl | 1° | 2° | 3° | | Bimolecular | $S_{N}1/E1$ or E_{2} | | | | Gives S _N 2 | Gives mainly | Gives mainly | No S _N 2 reaction. In | | reactions | S _x 2 except with | S_{x} 2 with | solvolysis gives | | | a hindered | weak bases | $S_{N}1/E1$, and at | | | strong base | | lower temperature | | | [e.g., (CH ₂) ₂ CO ⁻] | RCO ₂ -) and | S _x 1 is favoured. | | | and then gives | mainly E2 | When a strong | | | mainly E2. | with strong | base (e.g., RO ⁻) is | | | | bases (e.g., | used. E2 | | | | RO-) | predominates. | ### Haloform(Tri halide): - **Preparation:** It can be prepared from any alcohol having -CH(OH)CH₂ group or from the aldehydes and ketones formed from above type of alcohols i.e, from a carbonyl compound having three a hydrogen atoms by the action of X₂ and an alkali or Na₂CO₂. - Laboratory Preparation of CHCl₃: $$\begin{array}{c} \text{CH}_3\text{CH}_2\text{OH} \xrightarrow{\hspace{1cm}} \begin{array}{c} \text{oxidation by Cl}_2 \\ \end{array} \xrightarrow{\hspace{1cm}} \text{CH}_3\text{CHO} \xrightarrow{\hspace{1cm}} \begin{array}{c} \text{chlorination} \\ \end{array} \xrightarrow{\hspace{1cm}} \text{CCl}_3\text{CHO} \xrightarrow{\hspace{1cm}} \begin{array}{c} \text{Ca(OH)}_2 \\ \end{array} \xrightarrow{\hspace{1cm}} \text{hydrolysis} \end{array} \xrightarrow{\hspace{1cm}} \begin{array}{c} \text{CHCl}_3 \\ \end{array}$$ • **Physical properties of CHCl**₂ colourless liquid with sweet smell and test. It is heavier than water and insoluble in it but soluble in alcohol and ether. # Chemical Reactions of CHCl₃: - Oxidation: CHCl₂ + 1/2 O₂ → HCl + COCl₂ (phosgene) - **Hydrolysis:** CHCl₂ + 4NaOH → HCOONa + 3NaCl + 2H₂O - Carbyl amine reactions: CHCl₂ + CH₂NH₂ + 3NaOH → CH₂N≡C +3NaCl +3H₂O