ChemGGuru JEE Main Online Exam 2019

[Memory Based Paper]

Questions & Answer

12th January 2019 | Shift - I

CHEMISTRY

Q.1	A solution of 4 % X and another solution having 12 % Y (Both solution have same solvent). If molar mass of X is A then molecular mass of Y is -					
	(1) 3 A	(2) A	$(3) \frac{A}{2}$	(4) 2A		
Ans.	[1]					
Q.2 Ans.	BOD of sample first is 4 ppm and BOD of second sample is (1) Both are highly polluted (3) First is clean and second is highly polluted		 18 ppm. Which one is correct statement - (2) Both are clean (4) Second is clean and first is highly polluted. 			
Q.3	When concentrated HNO ₃ react with I_2 then what is the oxidation state of iodine in product -					
Ans.	(1) 7 [3]	(2) 3	(3) 5	(4) 1		
Q.4	For the following chemical reaction at T = 300 K $Zn_{(s)} + Cu_{(aq)}^{2+} \implies Zn_{(aq)}^{2+} + Cu_{(s)}$ If cell potential is 2 V and $\frac{dE}{dT} = -5 \times 10^{-4}$ find ΔH .					
Ans.	F = 96500 C (1) 384 kJ [3]	(2) + 96 kJ	(3) – 412 kJ	(4) – 380 kJ		
Q.5 Ans.	An element having atomic n (1) Transition metal [3]	o. 120 (not yet discovered) is -(2) Inner transition metal	(3) Alkaline earth metal	(4) Alkali metal		
Q.6	Which of the following has lowest freezing point - (1) OH (3) OH		$(2) \qquad \qquad OH \\ (4) \qquad OH \\ (4) \qquad \qquad OH \\ (4$			
Ans.	[1]		\checkmark \checkmark \checkmark			

Q.7 Which is the correct order of reactivity towards NaOH for following -

- $\begin{array}{ll} CH \equiv CH & CH_2 = CH_2 & CH_3 C \equiv C H \\ (1) CH \equiv CH > CH_2 = CH_2 > CH_3 C \equiv C H \\ (3) CH \equiv CH > CH_3 C \equiv C H > CH_2 = CH_2 \\ \end{array}$
- Ans. [3]
- Q.8 Which of the graph given below is incorrect -

- **Q.9** Which of the molecules are used to prepare co-polymer PHBV (Poly β-hydroxybutyrate Co β-hydroxy valerate)
 - (1) 2 hydroxy butanoic acid and 2 hydroxy pentanoic acid
 - (2) 2 hydroxy butanoic acid and 3 hydroxy pentanoic acid
 - (3) 3 hydroxy butanoic acid and 2 hydroxy pentanoic acid
 - (4) 3 hydroxy butanoic acid and 3 hydroy pentanoic acid
- Ans.

[4]

Q.11	$A + 2B \implies 2C + D$ Initial concentration of B is 1.5 times of A and at equilibrium, concentration of A and B are equal then find K _C					
Ans.	(1) 8 [2]	(2) 4	(3) 2	(4) 6		
Q.12 Ans.	Most Basic Amino acid is - (1) Histidine [2]	(2) Arginine	(3) Cysteine	(4) Serine		
Q.13 Ans.	If critical temperature of follo H ₂ , CO, CO ₂ , SO ₂ 33K 132.1K 304.25K 4 Which is least absorbed by a (1) H ₂ [1]	owing gases are . 30.25K respectively, then ctivated charcoal. (2) CO	(3) CO ₂	(4) SO ₂		
Q.14 Ans.	If magnetic moment of [M(H (1) $V^{+2} \& Cr^{+2}$ [4]	I ₂ O) ₆]Cl ₂ is 3.9 B.M. Then M c (2) Fe ⁺² & V ⁺²	(3) Fe^{+2} & Cr^{+2}	(4) V^{+2} & Co ⁺²		
Q.15 Ans.	In Hall heroult process, the c (1) C [1]	athode is made up of - (2) Pure Al	(3) Pt	(4) Cu		
Q.16 Ans.	If $M + O_2 \rightarrow X$ $X + H_2O \rightarrow Z + H_2O_2 + O_2$. (1) Li [2]	Then element M is - (2) Rb	(3) Na	(4) Mg		
Q.17	If solid A(s) is dissociated in a closed container having equilibrium constant $A(s) \Longrightarrow B(g) + C(g)$ $K_{P_1} = x$ and in the same container D(s) is also added, if $K_{P_2} = y$ is equilibrium constant for $D(s) \Longrightarrow C(g) + E(g)$ Total pressure at equilibrium is - (1) $\sqrt{x+y}$ (2) $2\sqrt{x+y}$ (3) $\sqrt{x^2+y^2}$ (4) $(x+y)$					
Ans.	[2] MeO <u></u>	CCl ₄)				
Q.10	$(1) \xrightarrow{CH_{3}O} \xrightarrow{Cl} \\ (3) \xrightarrow{CH_{3}O} \xrightarrow{CH_{3}O} \\ (3) \xrightarrow{CH_{3}O} \xrightarrow{CH_{3}O} \\ (3) \xrightarrow{CH_{3}O} \xrightarrow{CH_{3}O} \\ (3) \xrightarrow{CH_{3}O}$	Anhyd.)	(2) $CH_{3}O$ CH ₂ -Cl (4) CH_{2} -Cl	I ₂ –Cl		
Ans.	[1]					

(4) N₂

Ans. [4]

Q.23 If gas A has compressibility factor 3Z and volume 2V and gas B has compressibility factor Z and volume V at same temperature and same mole, then find relationship between P_A and P_B

(1) $3P_A = 2P_B$ (2) $2P_A = 3P_B$ (3) $P_A = P_B$ (4) $2P_A = P_B$ [2]

Q.24 What is the hardness in terms of $CaCO_3$ of water in the given sample which contain 10^{-3} M $CaSO_4$ (mol wt 136)

(1) 100 ppm (2) 10 ppm (3) 20 ppm (4) 90 ppm

Ans. [1]

Ans.

Which is suitable combination

(1)
$$H - C - H$$
, MeOH
 $\downarrow O$
(3) $CH_3 - C - H$, MeOH
 $\downarrow O$
(4) $CH_3 - C - H$, Tertiary butoxide
 $\downarrow O$
(4) $CH_3 - C - H$, Tertiary butoxide
 $\downarrow O$

Q.2650 ml of 0.5 M oxalic acid neutralizes 25 ml of NaOH. Then the amount of NaOH in 50 ml -
(1) 80g(2) 4g(3) 5g(4) 40 g

- Ans. [2]
- Q.27 With which d orbital ligand CN^{Θ} will form coordinate bond in K₃ [Co(CN)₆] (1) dx² - y², dz² (2) dx² - y², dxy (3) dxy, dxz (4) dz²

Ans. [1]

Q.28A photons falls on the metal surface having wavelength 4000 A° and ejected electron have velocity 6×10^5
m/sec. Calculate work function in (eV) (me = 9.1×10^{-31} kg)
(1) 2.1 eV(2) 3.1 eV(3) 2.5 eV(4) 4.1 eVAns.[1]

Q.29 Reactivity order of these compound with Alkyl halide –

